Suslin homology of relative curves with modulus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative (co)homology of $F$-Gorenstein modules

We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.

متن کامل

relative (co)homology of $f$-gorenstein modules

we investigate the relative cohomology and relative homology theories of $f$-gorenstein modules, consider the relations between classical and $f$-gorenstein (co)homology theories.

متن کامل

Homology of Algebraic Varieties: an Introduction to the Works of Suslin and Voevodsky

We give an overview of the ideas Suslin and Voevodsky have introduced in their works on algebraic cycles and their relation to the mod-n homology of algebraic varieties.

متن کامل

Suslin Lattices

In their work on spreading models in Banach spaces, Dilworth, Odell, and Sari [4] introduced the notion of a Suslin lower semi-lattice, a seemingly slight weakening of the notion of a Suslin tree. They posed several problems of a set theoretic nature regarding their notion. In this paper, we make a systematic study of the notion of Suslin lower semi-lattice, answering some of the questions rais...

متن کامل

Algebraic shifting increases relative homology

We show that algebraically shifting a pair of simplicial complexes weakly increases their relative homology Betti numbers in every dimension. More precisely, let ∆(K) denote the algebraically shifted complex of simplicial complex K, and let β j (K, L) = dim k H j (K, L; k) be the dimension of the jth reduced relative homology group over a field k of a pair of simplicial complexes L ⊆ K. Then β ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2016

ISSN: 0024-6107,1469-7750

DOI: 10.1112/jlms/jdw006